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,4&rec, - The paper introduces B general and efticient 
approach to dispersive multiport component modeling for use 
in conjunctian with SPICE-like time-domain transient analy- 
sis programs. The model computes at any time instant the 
port currents making use of the time-dependent exciting volt- 
ages and of frequency-domain data generated once for all by 
electromagnetic or circuit analysis. 

I. 1NTR0DUCT10N 

In the transient simulation of nonlinear integrated cir- 
cuits, signals with spectra ranging well into the GHz re- 
gion must be handled as a matter of course. This is not 
only true for microwave/mm-wave analog circuits, but for 
many digital circuits as well: for instance, the clock fre- 
quency of state-of-the-art microprocessors presently ex- 
ceeds 2 GHz. In such broad frequency ranges, passive 
multiport components such as directional couplers, corpo- 
rate feed networks, and multitire interconnects, normally 
exhibit a strongly dispersive behavior. As a consequence, 
the natural approach to the characterization of such de- 
vices is frequency-domain electromagnetic (EM) simula- 
tion, which is now well established. In particular, t+re is 
barely an alternative to this choice when the layout shape 
makes it impossible to describe the device as the intercon- 
nection of elementary components, and/or strong EM cou- 
plings exist between different parts of the circuit. On the 
other hand, tbe time-domain characterization of the same 
class of devices for use in conjunction with SPICE-like 
transient simulators, is still an open problem. Lumped 
element equivalent circuits are cumbersome to derive, and 
are often inaccurate when the number of ports exceeds 2. 
For some specific multiports such as multiwire intercon- 
nects, highly specialized and sophisticated modeling tech- 
niques have been developed [l], [2], but for generic de- 
vices reliable models of universal use do not seem to be 
available. 

The paper proposes a general-purpose numerical SPICE 
model, which for our present purposes is defined as a sub- 
program that computes the port currents (the component 
response) at a generic time instant starting from the 
knowledge of the time-dependent port voltages (the excita- 
tion). The device description consists exclusively of its 
frequency-domain scattering or admittance parameters, 
which may be generated by any frequency-domain analysis 
procedure, including layout-based EM simulation. This 
information is used in a preprocessing step to derive the 
ramp responses of the transfer functions between all cou- 
ples of ports. The exciting voltages are then approximated 
by piecewise linear functions, and the transient response is 
evaluated with high numerical efficiency. The model has 
been implemented into SPICE [4] as a user-defined de- 
vice, and has been successfully used in the transient and 
steady-state time-domain analysis of several kinds of cir- 
cuits containing passive multiport dispersive components. 

In this summary, for validation purposes the model is 
used in conjunction with SPICE to compute in tbe time 
domain the transient and steady-state responses of typical 
multiwire interconnects that can also be analysed by the 
telegraphers’ equations approximation [I] - [3]. The tran- 
sient results are in excellent agreement with those pro- 
duced by well-known spe+.lized algorithms [I] [3], with 
the significant advantage that with our model the.CPU 
time increases very slowly as a function of circuit com- 
plexity. The steady-state results are strictly identical to 
those obtained by standard Fourier analysis. More exten- 
sive results including EM-based applications will be pro- 
vided in the tinal version of the paper. 

II. DESCFXTION OF THE MODEL 

Let us consider a linear N-port network W of arbitrary 
topology excited by a set of voltages V,(t) applied to its 
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ports (1 5 j 5 N). We shall assume that a frequency- 
domain description of N is available in terms of its fie- 
quency-dependent N x N admittance matrix Y(w) where o 
ranges Tom zero up to some frequency R larger than the 
maximum frequency of interest for circuit analysis pur- 
poses. The choice of R will be further discussed later on. 
A generic entry of Y(w) will be denoted by Y$o). The 
time-domain response of !N to the set of excitations V,(t) 
will be defined as the set of time-dependent currents I,(t) 
entering the network ports. The purpose of this section is 
to compute such time-domain response under the follow- 
ing assumptions: 

I) the time variable is uniformly discretized, so that the 
response need only be computed at a set of sampling in- 
stants (SI) 

h=t,+(“-1)z (1) 

where n is an arbitrary integer. 
2) for t 2 t, the circuit is in stationary (DC) conditions, 

or equivalently the excitations satisfy the conditions 

Vj(t)=Vj(tl) (t<t,,lSjSN) (2) 

Note that no assumptions of any kind are made on the fre- 
quency dependence of Y(w), nor on the time dependence 
of the excitations V,(t). In order to solve the problem in an 
accurate and eficient way, we first introduce the unit ramp 
function r(t) of duration 5, defined by 

I 

0 iftS0 

r(t,r)= f ifO<t<z (3) 
‘T 
1 ift>z 

When a voltage excitation expressed by r(t, 7) is applied 
to the j-th port and all the remaining ports are short- 
circuited, the time-domain current entering the i-th port 
will be denoted by R&t, z). Let us now consider a generic 
voltage excitation g(t) applied to the j-th port. g(t) is as- 
sumed to satisfy a constraint similar to (2). Since only the 
response values at the SI are of interest, in the time inter- 
val tl 5 t 9 t,, g(t) may be replaced by the piecewise linear 
approximation 

g(t) = go,) + *(t tl, 7) [&) - s(t,)l + 

+ r(t t*, T) [g(f) g(t$] + = 

=g(t,)+i:[g(t,)-g(t,,)lr(t-t,,i) (4) 

p=* 

as shown in fig. 1. The summation in (4) is understood to 
be zero for n = 1. For any real network 4(t, T) must be 
causal (hj(t, r) = 0 for t < 0). At the i-th port, the aug- 

mented network response to the excitation (4) will thus be 
a current of the form 

where Y,.(O) is evaluated at DC. The n-th time-domain 
sample 0 Iij(t) is then 1 

I,(tn)=Yij(O)g(tl)+i:Ig(tp)-g(tp-l)IRl(t" -tpsT) rv=* 
(6) 

In the general case, the network excitation consists of all 
the voltages V,(t) applied to the ports. The time-domain 
sample of the I-th current at the n-th SI then takes on the 
expression 

(7) allows the circuit response to be efficiently computed 
at any time after the samples of the ramp responses %j(t, 7) 
have been computed and stored in the preprocessing step. 

III. Co~eumno~ OF THE RAMP RESPONSES 

For maximum computational efficiency, the ramp re- 
sponses Rij(t, r) are computed by ordinary frequency- 
domain analysis starting from trapezoidal excitations with 
rising and falling edges of duration ‘T. The sampled values 
of all the %(t, 7) at all the SI are found and stored prior to 
the beginning of circuit analysis. In this way, the analysis 
based on (7), despite being conceptually equivalent to a 
time-domain convolution, is much better conditioned and 
much faster. 

Let us consider the periodic trapezoidal excitation g(t) 
of period ~MT defined by 

g(t) = -j?{r(t - 2pM7,~) - r[t - (2p + l)Mr, 71 (8) 
PC.” 

The fundamental angular frequency of g(t) is obviously 

(9) 

g(t) is uniformly sampled in the time domain with step z/2’ 
where c is a positive integer greater than 0. The FFT is 
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then used to compute the harmonics G, of g(t). The num- 
her of available harmonics is given by 

H = int 
2C+‘M-l [ 1. (10) 

2 

so that the following Fourier expansion holds for g(t): 

g(t) = 5 G I, eWh%t) (11) 

h=-H 

If g(t) is now applied as a voltage excitation to the j-th 
network port, the current response pij(t) at the i-th port is 
obviously 

H 

P,,(t) = c Ytj(hw,) Gt, exp(jh%t) (12) 
h=-H 

so that the sampled values of p,(t) may be evaluated once 
again by the FFT after computing once for all the harmon- 
ics Gh. Note that (12) sets to n = Hq, the upper bound of 
the frequency range where the admittance matrix Y(o) 
must be known. qj(t) may then be generated from pi,(t) by 
letting 

R,,(t)= Pi,(t) 

1 

0 fort<0 

forO<t<Mz (13) 

yg (0) for t > Mr 

(13) takes advantage of the fact that the asymptotic value 
of q,(t) for t + m is given by Yij(0), and is thus a priori 
known. Of course, the value of M will have to be set in 
such a way that acceptable convergence to such asymptotic 
value be achieved for t = MT. 

For maximum accuracy, the sampled values of the re- 
sponses qj(t) at all the Sl should be stored in the computer 
memory. This is always done if sutiicient memory is avail- 
able. On the contrary, if the storage requirement exceeds 
the available memory, the program first computes the 
maximum number of samples, say S, that can be stored. 
The ramp response sampling interval is then redefined as 

ss = 2Q-C T (13) 

where Q is an integer (Q > c). Q is iteratively increased, 
while holding the total number of samples equal to S, until 
the condition 

IRij[(S-*)~,I-Y,(O)I<E (14) 

is satisfied for 0 2 r C 5, where E is a predefined threshold. 
Finally, only the samples 

Rjj(STS) (I s s s S) (15); 

are stored in the computer memory, while all intermediate 
values required for the computation of (6) are found by 
linear interpolation. 

IV. APPLICATIONS 

As a first application, we consider the distributed inter- 
connect network shown in fig. 2, which has been used by 
several authors as a standard benchmark (e.g., 131). The 
network Y matrix is computed in the frequency domain, 
and the samples of the ramp responses %(t) are found and 
stored. This preprocessing step takes about 5 seconds of 
CPU time and requires 2.3 MB of storage on an 800 MHz 
PC. As an example of the results generated in this way, fig. 
3 shows the ramp responses at ports 1, 3, normalized to 
YI1(0), Y1,(0), respectively, and fig. 4 shows the ramp 
response at port 4 (in this case Y12(0) = 0). A periodic 
trapezoidal excitation with rise/fall times of 0.1 ns and 
pulse width of 2.9 ns is then applied to the input port. In 
fig 5 the voltages at ports 1 3 generated by SPICE in 
conjunction with our model are compared with the results 
derived in [3] for the same circuit, and are found to be 
virtually coincident. The CPU time required for the gen- 
eration of these plots is about 126 seconds. In fig. 6 one 
period of the steady-state waveforms reached by SPICE 
after 100 cycles of a periodic trapezoidal excitation with 
rise/fall times of 0.2 ns and pulse width of 4.8 ns is com- 
pared with the results generated by Fourier analysis: in this 
case the two sets of results are strictly identical. As a fur- 
ther example, tig 8 shows the transient responses gener- 
ated by SPICE by means of our model at ports 1 - 3 of the 
4-section interconnect depicted in fig. 7. The point here is 
that the CPU time required to generate fig. 8 is about 119 
seconds, which is more or less the same as that for fig. 5, 
in spite of a four-fold increase in circuit complexity. 
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Fig. 1 Time domain piecewise linear approximation of a 
generic voltage excitation 
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Fig. 3 Network response at port 1 and 3 to a ramp excita- 
tion g(t) applied to port 1 
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Fig. 4 Network response at port 2 to a ramp excitation g(t) 
applied to port 1 
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Fig. 6 Steady-state output waveforms 
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Fig. 7 4-section coupled line interconnect Fig. 8 Output waveforms of the 4-section interconnect 

12 


	MTT025
	Return to Contents


