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Abstract — The paper introduces a general and efficient
appreach to dispersive multiport component modeling for use
in conjunction with SPICE-like time-cdomain transient analy-
sis programs. The model computes at any time instant the
port currents making use of the time-dependent exciting volt-
ages and of frequency-domain data generated once for all by
electromagnetic or circuit analysis.

I. INTRODUCTION

In the transient simulation of nonlinear integrated cir-
cuits, signals with spectra ranging well into the GHz re-
gion must be handled as a matter of course. This is not
only true for microwave/mm-wave analog circuits, but for
many digital circuits as well: for instance, the clock fre-
quency of state-of-the-art microprocessors presently ex-
ceeds 2 GHz. In such broad frequency ranges, passive
multiport components such as directional couplers, corpo-
rate feed networks, and multiwire interconnects, normally
exhibit a strongly dispersive behavior. As a consequence,
the natural approach to the characterization of such de-
vices is frequency-domain electromagnetic (EM) simula-
tion, which is now well established. In particular, there is
barely an alternative to this choice when the layoutl shape
makes it impossible to describe the device as the intercon-
nection of elementary components, and/or strong EM cou-
plings exist between different parts of the circuit. On the
other hand, the time-domain characterization of the same
class of devices for use in conjunction with SPICE-like
transient simulators, is still an open problem. Lumped
element equivalent eircuits are cumbersome to derive, and
are often inaccurate when the number of ports exceeds 2.
For some specific multiports such as multiwire intercon-
nects, highly specialized and sophisticated modeling tech-
niques have been developed [1], [2], but for generic de-
vices reliable models of universal use do not seem to be
available.
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The paper proposes a gencral-purpose numerical SPICE
model, which for our present purposes is defined as a sub-
program that computes the port currents (the component
response) at a generic time instant starting from the
knowledge of the time-dependent port voltages (the excita-
tion). The device description consists exclusively of its
frequency-domain scattering or admittance parameters,
which may be generated by any frequency-domain analysis
procedure, including layout-based EM simulation. This
information is used in a preprocessing step to derive the
ramp responses of the transfer functions between all cou-
ples of ports. The exciting voltages are then approximated
by piecewise linear functions, and the transient response is
evaluated with high numerical efficiency. The model has
been implemented into SPICE [4] as a user-defined de-
vice, and has been successfully used in the transient and
steady-state time-domain analysis of several kinds of cir-
cuits containing passive multiport dispersive components.

In this summary, for validation purposes the model is
used in conjunction with SPICE to compute in the time
domain the transient and steady-state responses of typical
multiwire interconnects that can also be analysed by the
telegraphers’ equations approximation [1] - [3]. The tran-
sient results are in excellent agreement with those pro-
duced by well-known specialized algorithms [1] - [3], with
the significant advantage that with our model the CPU
time increases very slowly as a function of circuit com-
plexity. The steady-state results are strictly identical to
those obtained by standard Fourier analysis. More exten-
sive results including EM-based applications will be pro-
vided in the final version of the paper. '

II. DESCRIPTION COF THE MODEL

Let us consider a linear N-port network # of arbitrary
topology excited by a set of voltages Vj(t) applied to its
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ports (1 < j £ N). We shall assume that a frequency-
domain description of # is available in terms of its fre-
quency-dependent N x N admittance matrix Y(w) where o
ranges from zero up to some frequency £ larger than the
maximum frequency of interest for circuit analysis pur-
poses. The choice of & will be further discussed later on.
A generic entry of Y(w) will be denoted by Y;;(®). The
time-domain response of W to the set of excitations V.(t)
will be defined-as the set of time-dependent currents 1(1)
entering the network ports. The purpose of this section is
to compute such time-domain response under the follow-
ing assumptions:

1) the time variable is uniformly discretized, so that the
response need only be computed at a set of sampling in-
stants (SI}

t,=t+n-1)1 08

where n is an arbitrary integer.

2) for t < t; the circuit is in stationary (DC) conditions,
or equivalently the excitations satisfy the conditions

Vj(t) = Vj(tl) (t<t,1£jEN) @

Note that no assumptions of any kind are made on the fre-
quency dependence of Y{w), nor on the time dependence
of the excitations Vj(t). In order to solve the problem in an
accurate and efficient way, we first introduce the unit ramp
function r(t) of duration 1, defined by :

0 ift<0
Wt )=1~ if0<t<t @)
T
1 ift>r

When a voltage excitation expressed by r(t, T) is applied
to the j-th port and all the remaining ports are short-
circuited, the time-domain current entering the i-th port
will be denoted by Rij(t, 7). Let us now consider a generic
voltage excitation g(t) applied to the j-th port. g(t) is as-
sumed to satisfy a constraint similar to (2). Since only the
response values at the SI are of interest, in the time inter-
val t; < < t, g(t) may be replaced by the piecewise linear
approximation

gty = gty + r(t - ty, 1)-[a(ty) - glt)] +

+r(t- ty, T (g(ts) - g(t)] +

=5+ ) lay) - sp)]e -t @

p=2
as shown in fig. 1. The summation in (4) is understood to

be zero for = 1. For any real network Rﬁ'(t, T) must be
causal (R;(t, 7) = 0 for t < Q). At the i-th port, the aug-
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mented network response to the excitation (4) will thus be
a current of the form

n
T =Y gt)+ Y laty) - 6ol Ryt - 15,0
‘p=2
(5)
where Y;:(0) is evaluated at DC. The n-th time-domain
sample o I(t) is then
Lii(ty ) = Y;5{0) 8(‘1)+z [g(tp) - g(tp»l)]Rij(tn -ty T)
. p=2
6}
In the general case, the network excitation consists of all
the voltages Vi(t) applied to the ports. The time-domain
sample of the i-th current at the n-th-SI then takes on the
expression

N
Li(te)= D Y@ Vit +
S
NJ 1
+ZZ [Vj(tp) - Vi(tpa )]Rij(tn -tpsT)

= p=2

N

(7) allows the circuit response to be efficiently computed
at any time after the samples of the ramp responses R;t, 1)
have been computed and stored in the preprocessing step.

TH. COMPUTATION OF THE RAMP RESPONSES

For maximum computational efficiency, the ramp re-
sponses Rj(t, 1) are computed by ordinary frequency-
domain analysis starting from trapezoidal excitations with
rising and falling edges of duration 7. The sampled values
of all the Rij(t, 1) at all the SI are found and stored prior to
the beginning of circuit analysis, In this way, the analysis
based on (7), despite being conceptually equivalent to a
time-domain convelution, is much better conditioned and
much faster.

Let us consider the periodic trapezoidal excitation g(t)
of period 2Mt defined by

g(t)= i{r(t -2pMt, 7) - tft - (2p + M7, ]} (8)

p:—DO
The fundamental angular frequency of g(t) is obviously
n
O = —— &)
7 Me

g(t) is uniformly sampled in the time domain with step 1/2°
where ¢ is a positive integer greater than 0. The FFT is



then used to compute the harmonics Gy, of g(t). The num-
ber of available harmonics is given by

c+l
H=in{z_,_1\g] (10)
2
s0 that the following Fourier expansion holds for g(t):
H .
glt) = Z Gy, exp(jhogt) an

h=-H
If g(t) is now applied as a voltage excitation to the j-th

network port, the current response pij(t) at the i-th port is
obviously

H
py(t) = Z Yj(hoog ) Gy exp(hagty  (12)
h=-H

so that the sampled values of p;j(t) may be evaluated once
again by the FFT after computing once for all the harmon-
ics Gy, Note that (12) sets to Q = Hey the upper bound of
the frequency range where the admittance matrix Y(w)
must be known. Rij(t) may then be generated from P10 by
letting ’

0 fort<0
Ry(th={py()  for0<t<Mt (13)
Y;(0) fort> Mz

(13) takes advantage of the fact that the asymptotic value
of Rij(t) for t — o= is given by Yij(O), and is thus a priori
known. Of course, the value of M will have to be set in
such a way that acceptable convergence to such asymptotic
value be achieved for t = M1,

For maximum accuracy, the sampled values of the re-

sponscs R‘-j(t) at all the SI should be stored in the computer
memory. This is always done if sufficient memory is avail-
able. On the contrary, if the storage requirement exceeds
the available memory, the program first computes the
maximum mumber of samples, say S, that can be stored.
The ramp response sampling interval is then redefined as

1g= 291 (13)

where Q is an integer (Q > ¢). Q is iteratively increased,
while holding the total number of samples equal to S, until
the condition .

[R;(s - ns]- 00 < (19

is satisfied for 0 < r < 5, where ¢ is a predefined threshold.
Finally, only the samples

R;i(s15) (1<558) (15)/
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_are stored in the computer memory, while all intermediate

values required for the computation of (6) are found by
linear interpolation.

IV. APPLICATIONS

As a first application, we consider the distributed inter-
connect network shown in fig. 2, which has been used by
several authors as a standard benchmark (e.g., [3]). The
network Y matrix is computed in the frequency domain,
and the samples of the ramp responses Rj;(t) are found and
stored. This preprocessing step takes about 5 seconds of
CPU time and requires 2.3 MB of storage on an 800 MHz
PC. As an example of the results generated in this way, fig.
3 shows the ramp responses at ports 1, 3, normalized to
Y, 1(0), Y,3(0), respectively, and fig. 4 shows the ramp
response at port 4 (in this case Y ,(0) = 0). A periodic
trapezoidal excitation with rise/fall times of 0.1 ns and’
pulse width of 2.9 ns is then applied to the input port. In
fig 5 the voltages at ports 1 - 3 generated by SPICE in
conjunction with our model are compared with the results
derived in [3] for the same circuit, and are found to be
virtually coincident. The CPU time required for the gen-
eration of these plots is about 126 seconds. In fig. 6 one
period of the steady-state waveforms reached by SPICE
after 100 cycles of a periodic trapezoidal excitation with
rise/fall times of 0.2 ns and pulse width of 4.8 ns is com-
pared with the results generated by Fourier.analysis: in this
case the two sets of results are strictly identical. As a fur-
ther example, fig 8 shows the transient responses gener-
ated by SPICE by means of our medel at ports 1 - 3 of the
4-section interconnect depicted in fig. 7. The point here is
that the CPU time required to generate fig. 8 is about 119
seconds, which is more or less the same as that for fig. 5,
in spite of a four-fold increase in circuit complexity.
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Fig. 1 Time domain piecewise lingar approximation of a
generic voltage excitation
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Fig. 3 Network response at port | and 3 to a ramp excita-
tion g(t) applied to port 1
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Fig. 5 Output waveforms obtained by Spice in conjunction
with our model
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Fig. 7 4-section coupled line interconnect
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Fig. 2 Interconnect network with three coupled lines
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Fig. 4 Network response at port 2 to a ramp excitation g(t)
applied to port 1
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Fig. 6 Steady-state output waveforms
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Fig. 8 Output waveforms of the 4-section interconnect
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